
Version control
Developed from lecture of Kamila Babayeva (assistant Fall 2022)



What this class of tools solves

Track multiple versions of the same file over time

• Do not need to save multiple versions of the same file _V1, _V2, _V3

• Saves incremental changes (saves space) – can reconstruct current or previous version 
of a file by piecing together sequence of small changes

• Can “roll back” to earlier version of the code base or particular file.

Track multiple versions of the same project directory (and files) across users

• Multiple people working on different (or sometimes same parts of the project)

• Provides mechanism for handling “merging” conflicts



The version control ecosystem

• There exist many version control systems (VCS):
• git (most widely used by a large margin)

• mercurial

• subversion

• bazaar

• Also many git repositories ($$, free for us)
• GitHub (bought by Microsoft) – widely used; deal with EPFL

• GitLab

• GNU Savannah



How to use git

• Choose a remote repository to host your project 
(GitHub recommended; GitLab also good)

• Install git (https://github.com/git-guides/install-git)
• On Windows, if you installed Git for Windows or Git for 

Windows SDK, then you already have it.
• git is traditionally used in the terminal (command line)

• Optional – install git client (GUI – e.g., GitHub 
Desktop)
• https://git-scm.com/downloads/guis
• also edamagit (https://github.com/kahole/edamagit) for 

VS Code – for advanced users
• all features may not be implemented; terminology used 

by GUIs may differ

https://en.wikipedia.org/wiki/Git 

https://github.com/desktop/desktop 

https://github.com/git-guides/install-git
https://git-scm.com/downloads/guis
https://github.com/kahole/edamagit
https://en.wikipedia.org/wiki/Git
https://github.com/desktop/desktop


Conceptual model



Git actions



git terminology:

• remote/local repository - a database where data are stored

• working copy - a copy of file in your development environment

• commit - a state of the code

git operations:

• git clone - create a local copy of a remote repository - local repository

• git add - prepare a file to be committed in your local repository (staging area)

• git commit - copy a state from working copy to local repository

• git pull - update working copy from remote repository

• git push - copy change from local repository to remote repository



Git commit



Git workflow



Git branching

git terminology:

• a branch is a sequence of commits + a version of the repository that diverges 
from the main working project

https://the-turing-way.netlify.app/reproducible-research/vcs/vcs-git-branches.html 

https://the-turing-way.netlify.app/reproducible-research/vcs/vcs-git-branches.html


• Branches can be temporary or permanent.

• Good practice is for the main branch to have stable code, and do the 
development on a develop branch

git operations:

• git branch - create a new branch from a chosen base branch

• git checkout - switch from one branch to a desire one

• git merge - apply changes from one branch into the current one



Git merge

• After completing a feature in a separate branch, merge with main branch.

• First, merge main into feature branch so that main is not messed up for someone 
else who may want to merge their branch into the working main branch.

• Once conflicts are resolved, merge your feature into main.



Git merge and resolving conflicts

https://learn.microsoft.com/en-us/visualstudio/version-control/git-resolve-conflicts 

1. Edit the text files to resolve conflicts (text files are tagged with <<< >>> ===)

2. Go back to git add, git commit, git push

https://learn.microsoft.com/en-us/visualstudio/version-control/git-resolve-conflicts


Git reset to previous version

• git reset –soft <commit_hash>
• delete commits

• git reset –hard <commit_hash>
• delete commits and revert working copy to a previous state

• git log –n to retrieve <commit_hash>. n is an integer value of up to how 
many commits back you want to display. E.g., git log -3 for the last three 
commits. You will see the <commit_hash> corresponding to each of these 
commits displayed.



Some tips

git can be hard, but is useful and widely 
used

don’t be embarrassed to start over

• e.g., you can’t resolve conflicts and 
commit changes you made in folderA

• clone the remote repository to a 
different folder (folderB)

• manually transfer changes from 
folderA to folderB (alternatively, use 
rsync, another terminal tool)

• forget about folderA

https://xkcd.com/1597/ 

https://xkcd.com/1597/


Further reading

• A brief list of common commands

• Blog on the git data model

• Blog on git branching

https://stakahama.gitlab.io/sie-eng270/git.html
https://konrad126.medium.com/https-medium-com-zspajich-understanding-git-data-model-95eb16cc99f5
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

	Slide 1: Version control
	Slide 2: What this class of tools solves
	Slide 3: The version control ecosystem
	Slide 4: How to use git
	Slide 5: Conceptual model
	Slide 6: Git actions
	Slide 7
	Slide 8: Git commit
	Slide 9: Git workflow
	Slide 10: Git branching
	Slide 11
	Slide 12: Git merge
	Slide 13: Git merge and resolving conflicts
	Slide 14: Git reset to previous version
	Slide 15: Some tips
	Slide 16: Further reading

