Version control

Developed from lecture of Kamila Babayeva (assistant Fall 2022)

What this class of tools solves

Track multiple versions of the same file over time
* Do not need to save multiple versions of the same file V1, V2, V3

« Saves incremental changes (saves space) — can reconstruct current or previous version
of a file by piecing together sequence of small changes

« Can “roll back” to earlier version of the code base or particular file.

Track multiple versions of the same project directory (and files) across users
» Multiple people working on different (or sometimes same parts of the project)
* Provides mechanism for handling “merging” conflicts

The version control ecosystem

* There exist many version control systems (VCS):

 git (most widely used by a large margin)
* mercurial

* subversion

* bazaar

« Also many git repositories ($$, free for us)
« GitHub (bought by Microsoft) — widely used; deal with EPFL
« GitLab
 GNU Savannah

How to use git

« Choose a remote repository to host your project
(GitHub recommended; GitLab also goods)

« Install git (https://github.com/git-guides/install-qit)

* On Windows, if %/ou installed Git for Windows or Git for
Windows SDK, then you already have it.

* gitis traditionally used in the terminal (command line)

« Optional — install git client (GUI — e.g., GitHub
Desktop)
e https://qgit-scm.com/downloads/quis

* also edamagqit (https://github.com/kahole/edamaaqit) for
VS Code — for advanced users

- all features may not be implemented; terminology used
by GUIs may differ

$ git init

Initialized empty Git repository in /tmp/tmp.IMBYSY7R8Y/.git/
$ cat > README << 'EOF

> Git is a distributed revision control system.

> EQF

$ git add README
$ git commit

[master (root-commit) eddcc69] You can edit locally and push
to any remote.

1 file changed, 1 insertion(+)

crate mode 100644 README
$ git remote add origin git@github.com:cdown/thats.git
$ git push -u origin masterll

https://en.wikipedia.org/wiki/Git

https://github.com/desktop/desktop

https://github.com/git-guides/install-git
https://git-scm.com/downloads/guis
https://github.com/kahole/edamagit
https://en.wikipedia.org/wiki/Git
https://github.com/desktop/desktop

Conceptual model

|

I

|

i @ Working
| co

i A\ Py

|

|

| |
: i
i @ Working !

|
N B |
| |
| |
! |

Remote
repository

) GitHub

Git actions

Working copy Staging area Local repository Remote repository

gitc git clone

git commit

git commit

git terminology:

« remote/local repository - a database where data are stored

« working copy - a copy of file in your development environment
e commit - a state of the code

git operations:

* git clone - create a local copy of a remote repository - local repository

git add - prepare a file to be committed in your local repository (staging area)
git commit - copy a state from working copy to local repository

git pull - update working copy from remote repository

git push - copy change from local repository to remote repository

Git commit

|

i

l

|

! @ Working
! copy
Il

i

i

Remote
| repository
| Alice's pc . |
| main.py !
|
|

L & &
"~ o

commit f986ca70

Author: Bob

Date: Thu May 5 12:58:13 2022
func.py: add function to calculate
energy

Remote
e repository

commit c89e9del
Author: Alice

|
I
|
I %
: I
[I Date: Thu May 3 18:18:11 2022
i @ } main.py: add parameters for
copy I functions, print results
|
Il |
I

I
: Bob's pc i
|
I commit c0 :
: commitcl |
! 1
[|
| Working !
i M copy
e, commit c0
commit c1
T commited |
Alice's pc commit c2

commit ¢3

I

|

|

i commit ¢1 '

I@ Working |

i M copy :
1

| I

| 1

| U
| Bob's pc !
I
: commit c0 :
: commitel |
! I
! I
i Working |
| <
IM copy
L
T commitcd
Alice’s pc commit c2
commit ¢3

|
|

|

l commit ¢1
I@ Working

lM copy

|

|

|

commit c0
commit c1
commit c2
commit c3

Bob

Git workflow

commit c0
commit ¢1
commit c2
commit ¢3

Working
copy
commit c0
commit ¢1
commit c2
commit ¢3

commit c0
commit c2
commit c3
commit c1

Working
copy

Git branching

git terminology:

« a branch is a sequence of commits + a version of the repository that diverges
from the main working project

—Q@

—0—0—@®

main Q—O0—0—Q—0—0—0—0—0—0
O0—0

Feature A-1

Feature A

https://the-turing-way.netlify.app/reproducible-research/vcs/vcs-qgit-branches.html

https://the-turing-way.netlify.app/reproducible-research/vcs/vcs-git-branches.html

« Branches can be temporary or permanent.

« Good practice is for the main branch to have stable code, and do the
development on a develop branch

git operations:

* git branch - create a new branch from a chosen base branch

« git checkout - switch from one branch to a desire one

* git merge - apply changes from one branch into the current one

Git merge

« After completing a feature in a separate branch, merge with main branch.

 First, merge main into feature branch so that main is not messed up for someone
else who may want to merge their branch into the working main branch.

* Once conflicts are resolved, merge your feature into main.

git checkout feature # switch to feature branch

git merge main # merges main into feature

>>> resolve any merge conflicts if there are any <<<

git checkout main switch to feature branch

git merge feature # merge feature into main; should not have any conflicts

++

Git merge and resolving conflicts

File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search (Ctrl+Q) O

o ~ u‘_‘}_ =] = D> E3 53 P Current Document (EasterEggBounce.cs) ¥ _ A & INT PREVIEW

EasterEggBounce.cs + X Git Repository - ShareX EasterEggAb...Animation.cs ~ # Git Changes - ShareX n x

© File contains merge conflicts. NewFeature -

SUOIIEdI1ION

X
Miscellaneous Files ~ a@Share)(.EasterEggBounce ~ | # BouncePower % A Merge in progress with conflicts

Elnamespace ShareX

{
= bublic class EasterEggBounce : IDisposable

(7]
(1]
L
=
m
L
m
>
<
]
m
L
g'
=
o
e

¢ Form Form { g¢ t; private set; }
IsWorking { get; private

4 Unmerged Changes (2)
ic Rectangle BounceRectangle {

4 B c:\Users tagherfa\source
c Speed { get; set; } = 22; C# EasterEggAboutAnimation.cs [
ApplyGravity { get; set; true; C# EasterEggBounce.cs [both modified]
© GravityPower { get; : :
1t BouncePower { get; set; g 4 Changes

t Speed { get; set; } = 25;
bol ApplyGravity { get; set; } = true;
't GravityPower { get; set; } = 3;

P Stashes (1)
1t BouncePower { get; set; } = 60;

https://learn.microsoft.com/en-us/visualstudio/version-control/git-resolve-conflicts

1. Edit the text files to resolve conflicts (text files are tagged with <<< >>> ===
2. Go back to git add, git commit, git push

https://learn.microsoft.com/en-us/visualstudio/version-control/git-resolve-conflicts

Git reset to previous version

e git reset —soft <commit_hash>
» delete commits

e git reset —hard <commit_hash>
« delete commits and revert working copy to a previous state

* git log —n to retrieve <commit_hash>. n is an integer value of up to how
many commits back you want to display. E.g., git log -3 for the last three
commits. You will see the <commit_hash> corresponding to each of these
commits displayed.

Some tips

git can be hard, but is useful and widely
used

don’t be embarrassed to start over

* e.g., you can't resolve conflicts and
commit changes you made in folderA

* clone the remote repository to a
different folder (folderB)

- manually transfer changes from
folderA to folderB (alternatively, use
rsync, another terminal tool)

 forget about folderA

THISIS GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

r COOL. HoU DO WE VSE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC UR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLOAD A FRESH COPY.

\ﬁ

https://xkcd.com/1597/

https://xkcd.com/1597/

Further reading

* A brief list of common commands

* Blog on the git data model

* Blog on qgit branching

https://stakahama.gitlab.io/sie-eng270/git.html
https://konrad126.medium.com/https-medium-com-zspajich-understanding-git-data-model-95eb16cc99f5
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

	Slide 1: Version control
	Slide 2: What this class of tools solves
	Slide 3: The version control ecosystem
	Slide 4: How to use git
	Slide 5: Conceptual model
	Slide 6: Git actions
	Slide 7
	Slide 8: Git commit
	Slide 9: Git workflow
	Slide 10: Git branching
	Slide 11
	Slide 12: Git merge
	Slide 13: Git merge and resolving conflicts
	Slide 14: Git reset to previous version
	Slide 15: Some tips
	Slide 16: Further reading

